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The conceptual basis underlying pressure splitting schemes in
fluid mechanics is clarified by deriving a split step scheme using a
rational approximation procedure, and it is shown that a modified
vaersion of the method provides accurate solutions for hoth the
veloeity and the pressure. In the most effective of the algorithms
proposed here the velocity is advanced in time using a variant of
a current split step scheme, and the pressure is corrected by solving
an additional Poisson equation ad libitum. The method is demon-
strated for a sample problem. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Split step methods are approximations in which the solution
of an evolution equation is advanced in timie by solving a set
of simple problems, each of which brings in a different aspect
of physics. One of the most widely used methods, first investi-
gated by Chorin [ 1], provides a nuimerical solution of the equa-
tions governing incompressible fluid How by treating the pres-
sure and viscous {orces separuely and sequentially. The atm
of most recent studies of pressure splitting schemes in (loid
mechanics is to improve Chorin’s algorithm by devising a
method that provides second or higher order temporal accuracy
in the computation of the velocity,

Recently, several papers {2-4} have appearcd on pressure
splitting methods which remove some of the mystery from the
subject. In the first of these studics, Van Kan provides a rigorous
analysis of a split step method tha bypasses the issue of bound-
ary conditions on the pressore by a priori spatial discretization
ol" the Navier-Stokes equations. In the second, Bell e al. make
the very original observation that pressive splitting schemes
congist of taking one step in aniterative proceduore for advaneing
the solution from time ¢ to time 1 + Ar, and they develop such
a scheme on this basis. In the third, Dukowicz and Dvinsky
derive a pressure splitting method equivalent to Van Kan’s by
giving an approximate solution of the system of linear equations
treated iteratively by Bell ef af.

As regards accuracy of the methods, Van Kan shows that
the plobal velocity and pressure errors in his split step scheme
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are of order {An? and order A, respectively, and states, without
proof, that the ercor in computing the pressure is also of order
(A?)®. In other studies, Shen [5, 6] estimates the temporal errors
in the original Chorin method, the Kim—Moin scheme {7], and
olher pressure splitting procedures, and linds that accuracy
comparable to Van Kan’s program can be obtained through
use ol a penally function method. However, Shen notes that
use of the penalty function procedure leads to ill-conditioned
gquations.

The methods given in [2-4] have an advantage over other
split step schemes [6-9] and the influence matrix method {10]
because they are not tightly tied to the Navier—Stokes equations,
and can therefore be used to treat variable viscosity flows
and two-equation turbulence models. However, if the pressure
calculation is relatively inaccurate, as implied by Van Kan's
error cstimates and some of his calculations, the error in com-
puting the pressure is unacceptably large when surface forces
are of interest.

In the present study we remedy this defect, and we also
clarify the method by showing that the approximate matrix
factorization given in (4] leads immediately to the iteration
procedure treated in [3] and by providing a rigorous proof that
the iteration converges. The programs proposed here are derived
in Section 2 and tested on a sample problem in Section 3.

2, ANALYSIS

The physical system of interest is deseribed by the dimen-
sionfess Navier—Stokes equations,

V-u=10. ()
au ]
—+u-Vu+VP=—-Vu+
Y u-Vu+ Ve R‘3Vu £, (2)

where u(x, f) and P(x, ) are the dimensionless velocity and
pressure, fis a dimensioniess body force, and Re is the Reynolds
number. Equations (1) and (2) hold in an open spatial domain
Q with boundary 912, at which some combination of u and its
normal derivative is prescribed. In addition, the initial velocity
u(x, 0) satisfies both (1) and the boundary conditions.
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We begin by discretizing (1) and (2) spatially vusing any
convenient method. The dependent variables then become i, a
column vector denoting the velocity in €); v, a column vector
denoting the velocity on 4{}; and p, a column vector denoting
the pressure, and the governing equations can be cast in the form

i+ e, )+ Gp=Ku+Lv+]f (3)
Bu + Cv =g, (4)

Du+ Ev =0, 5

Rp =10, (6)

where the vector operators in (1} and (2) are represented by
matrices, denoted in (3)-(6) and below by upper case letters.

Here (3) is the discretized momentum equation, the overdot
denotes a time derivative, ¢ and Gp are the advection and
pressure gradient terms, Ku and Lv represent viscous terms,
and fis the body force. Equation (4) represents the boundary
conditions, where g denotes a forcing term, and (5) is the
discretized continuity equation. Including the velocity on the
boundary as an unknown generalizes the schemes given in
[2-4] and is necessary when the flow is driven by an applied
stress on ).

To see the significance of (6), we note that (3) and the
derivatives of (4) and (5) with respect to ¢ provide a system of
linear equations for i, 0, and p. In general, the homogeneous
version of this system admits n nontrivial pressure mode solu-
tions (&, 0, py = (0, 0, p®), 1 = k = n, where one of the
vectors p* corresponds to a spatially constant solution of
VP = 0, and the others, if any, are spurious, It follows from
the Fredholm alternative theorem that the forcing terms must
satisfy n solvability conditions for a solution to exist, in which
case (&, ©, p) is the sum of a particular solution and a linear
combination of the pressure modes. The purpose of (6) is to
render the solution unique by choosing R as a matrix with the
property that Rp = 0 projects the solution onto the orthogonal
complement of the space spanned by the pressure modes. An
example of the use of this procedure is given in [11].

We now discretize in time through use of the second-order
backward differentiation scheme

= (g’ — a '™+ AL

C"r = b[]CJ_I - b]CJ_z

M

»

where J is a positive integer, ¢’ denotes the value of any
dependent variable g evaluated at time r = JAr = v/, and

dg = 1,a1 = 1,32:0, b(]:: 1, b] =0 (J= ]), (Sa)
au=3/2,a1:2,a2= 1/2,
bh=2Lb=1 (J>1) (8h)

In this scheme the solution is advanced in time by solving
the system

(F —eK —elv + eGp = #, %)
Bu+ Cv=20, (10)

Du+ Ev=0, (1D

Rp =10, {12)

where € = At/ay, (1, v, p) = (u’, v’, p*}, I is an appropriately
dimensioned identity matrix, and v and § are given by

ll’= (ﬂluj_] - agu"H)/ao + S(fJ - bgCJil + blcjiz), = gj.

(13)

A similar set of equations is obtained when a Crank—Nicholson/
Adams—Bashforth scheme is used in place of (7).

In accord with the above discussion of the pressure modes,
we assume that the enhanced system (9)-(12) is consistent and
that the homogeneous equations are solved uniquely by u =
v = p = (. A theorem in linear algebra [12] then guarantees
that (9)—(12) has a unique solution, which can be found in
principle by computing the pseudo—inverse of the matrix

I—-eK —elL &G
B C 0

S (4
0 0 R

The Uzawa strategy for inverting A consists of defining matrices
U and V as the solution of

(- eK)U — gLV = G, BU + CV =0, (15)

and of solving the system
(I — eKdii — el =y — &Gy, Bi + Cé = 8, (l6a)
e(DU + EV)p = Dii + EU, Rp =0, (16b}
u=1a— elp, v=10— eVp, p=p+yx (l6c)

where y is any vector satisfying Ry = 0.
To avoeid this calculation, we define the column vectors

X = (u-, b, p)T, y = (l}”; 6! 01 O}T! (17)
so that (9)—(12) are equivalent to Ax = y, and we follow

Dukowicz and Dvinsky by defining the matrix
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I—eK —&egL 0 0 I 0 G

_ B c o0 ollo 1 eH

A=l 1 ollp E - 9
0 o illo o &

where the dimensionality of the identity matrices is determined
by context and where
H=-C"'BG. (i

The definitions imply ihat/_& — A = 0(g?), and therefore, since

it can be shown that A7 = O(g™!), it follows that
1A=1A — &)l = 0(e), 20)
where || - || is any matrix norm. Consequently, for sufficiently

small £ a standard theorem [13] guarantees that the scheme

Z(xk—xk_1)=y—Axk_l, k= 1,2,..., (21)
converges as k —> oo for arbitrary x,. Equation (21} is a spatially
discretized version of the iteration procedure suggested by Beli
et al.

As emphasized by Van Kan, the issue of boundary conditions
does not arise in this scheme. By contrast, because Bell et al.
discretize the Navier—Stokes equations spatially after, rather
than before, the temporal discretization, they need boundary
conditions on the pressure to give a meaning to Poisson equa-
tions for the pressure iterates in their iteration scheme. Bell
et al. fail to provide such conditions and therefore, except
for spatial discretizations soch that boundary conditions
on the pressure are not needed, their convergence proof is in-
complete.

When written in explicit form, (21) becomes

(I — eK)u, + eG(p, — pic )} — el{v + eH{(p, — p)}

=4 — eGpy, 22)

Blu, + eG(p, — pe-1)} + Cluy + eH(py — pi)} = 6, (23)
Du, + Ev, = 0, (24)

Rp. = 0. (25)

By defining d, and &, as the terms in curly brackets in (22)-
(23) and p, as (p, — pr-y), the scheme can be cast in algorithmic
form, as follows:

(1) let y denote a known vector satisfying Ry = 0 and set

Po = X {26a)

(2) Fork = 1,2, .., N, do

(a) solve
(] — EK)I:,{. - BLﬁi = !,Il - Ekaﬁ;, Bﬁ,{ -+ Cﬂk = B, (26b)
for &, and 0y
(b) solve
(DG + EHYp, = D, + ED,, Rp, =10, (260)
for fi;
(c} update by setting
P = Pt pr- (26d)

The approximate solution (&, U, p} is given at the end of the
loop by
E = ﬁN - SGﬁN, U= ﬁN - EHﬁN,[_) = DPw. (27)

If only one iteration is carried out, the scheme reduces to

(I~ ekyi—elt = — Gy, Bi+ Co=86 (28a)
e(DG + EH)p = Di + E6, Rp =0,  (28b)
u=4-—¢eGp, U=0—¢eHp, p=p+x (28)

and is equivalent to the method proposed in [2-4]) if y = p*!,
the pressure at the previous time step. For this choice of y, a
rigorous estimate given in [2] shows that the global error in-
curred through use of (28) is O(e?) and O(s) with respect to
the velocity and pressure, respectively, and it 1s claimed in [2]
that the global pressure error is O(z7).

In what follows we designate the scheme (28) with y = p’!
as program P1, and more accurate algorithms as P2, P3, and
P4, The reasoning behind our first improvement is that (28)
provides the exact solution of (9)—(12) if y = p, and therefore
a choice of y that decreases ||y — p|| necessarily increases the
accuracy of the computation. In program P2 we improve on
the choice y = p’~! by specifying y through

x=p =1 x=2pT-pU>D 29
so that y is obtained from the solution at previous time steps
by linear extrapolation. Sample computations discussed below
show that wse of (29) provides significant improvements in the
accuracy of the calculation.

A further increase in the accuracy of the pressure computation
is attained in programs P3 and P4 by exploiting the second-
order accuracy of the velocity computation in program P2 and
by noting that the pressure at any time depends only on the
instantaneous velocity. In program P3 we form the system of
equations for #, 0, and p discussed earlier in connection with
the pressure modes, eliminate & and v, and solve
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(DG + EH)p. = (D — ECT'BYKu + LT+ f— c(u, D)}
+ EC'Bg, Rp.=0, (30)

to obtain the corrected pressure p,, where & and U are computed
using (28). Similarly, in program P4 we compute # and T using
(28), derive a Poisson equation for P(x, f) with Neumann bound-
ary conditions by taking the divergence of (2) and evaluating
the normal component of (2) on d{}, and again denote the
solution of the spatially discretized Poisson equation by p,. In
both programs the velocity and pressure are actually advanced
as in program P2, and the corrected pressure is calculated
solely for the purpose of reporting its value. This maintains the
stability of the calculation and is economical because solution
of the Poisson equation for p. is required only at time steps for
which the solution is reported.

In summary, P! is the scheme proposed in [2—4] and requires
the solution of one vector Helmholtz equation and one Poisson
equation per time step. Program P2 involves the same amount
of calculation, but computes y using (29), and programs P3
and P4 require the solotion of one Helmholtz equation and
(1 + 1/N) Poisson equations per time step, where y is given
by (29) and where the solution is reported every Nth step.

We now propose a pressure splitting scheme for use when
the Navier—Stokes equations are spatially discretized using a
Galerkin finite element method. If the boundary £} is a station-
ary solid, the solution is advanced in time by solving the alge-
braic system

M — eKw + eGp = ¢, Du=0,Rp=0, (@G
where ¢ is known and where M is the mass matrix. In principle,
split step methods can be applied by multiplying the first equa-
tion in (31) by M~ to obtain an equation equivalent to (9), but
are inefficient because the gradient operator is then represented
by the full matrix M ~'G. This problem is treated in [14] using
an ad hoc theory in which the discretized momentum equation
is replaced by

(M — eK)u+ eMM['Gp = ¢,

where the diagonal matrix M, is a lumped mass approximation
to M.

To derive a finite element split step scheme using a consistent
approximation procedure, we define # and p through

u=i—eM['Gp, pP=p+x (32)

where Ry = 0, and substitute into (31} to obtain
M — eK)i +{e’K + (M, — MIIM['Gp = ¢ — &Gy, (33
eDMD'Gp = Di, Rp = 0. (34)

Here p = O(e) if y = p’~' orif yis given by (29), and therefore
the term involving 4 in (33) is O(=> + &2 &) if | M, — M| =
O(5), where we assume that § is small. Neglecting this term
yields a split step scheme in which u and p are given by (32)
and in which & is obtained by solving
(M — eKyi = ¢ — eGy (35)
and p by solving (34). Although solving an equation analogous
to (30) is inefficient in this method because it requires inversion
of the full matrix DM ~' G, higher order accuracy in the computa-

tion of the pressure can be obtained through the use of pro-
gram P4,

3. SAMPLE CALCULATIONS

As an example, we consider 2D Stokes flow in the channel
|zi < 1, —o < x < %, where u vanishes on z = =1 and where
all dependent variables are periodic in x. This standard test
problem is treated in [9] and [ 10] to evaluate routines for solving
the Navier—Stokes equations.

After separating variables using F = f(z, ) exp(icex), where
F is any dependent variable, employing a change of variable
yields the equations

du ) 1 (8%

X wp=— | 36

a P Re (azz & (36)
dw  dp 1 {o*w

—_ _+_ A = 2 , 7
dt az Re ( 0z w) @7
w2, (38)

0z

together with &« = w = 0 at z = *1. The system (36)-(38}
admits eigensolutions of the form exp(—eot)h(z), and in the
present calculation the analytic solution corresponding to the
decay constant ¢ = 9.314/Re for @ = 1 was taken as the
initial condition.

In the first of the spatial discretizations used here, we de-
fine

Iy =

—cos {”U ”}, l=I=M, (39)

M-

as the Chebyshev—Lobato grid points, and let Dy and E; denote
the first and second differentiation matrices in a pseudospectral
collecation approach. After discretizing in both space and time
and defining T by

M-1

T = 2‘5 DyDy, (40)
J=
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TABLE I

SwforRe=1, M=17, a = L,and T = 0.3,
Pseudospectral BDF Version

At P1 P2 P3 P4
1.00 e-2 3.0e-3 1.0 e-4 1.0 e-4 1.0e4
5.00e-3 73 e-4 1.0 e-5 1.0 e-5 1.0 e-5
2.50 e-3 1.8 e-4 [.le6 1.1 e-6 1.1 e-6
1.25 e-3 4.4 e5 1.3e7 1.3 e-7 13e7
6.25 ¢-4 1.1e-$ 1.6 e-8 1.6 e9 1.6 e-8
313 ¢4 2.7 e-6 199 1.9 e-9 1.9 e-9
1.56 e-4 6.9 e-7 24 e 10 24 e-10 24 e-10

we find that the split step equations take the form

M-1
&
. ~ a4 L
Uy — —— Z E;Kuk_a U; —r;+a28/\/;
Re \ i3

R=I1=M-1), (41a)
e (M L
W — ﬁ_ (2 EyeWoy — alwr} =38 € 2 Dig xx
e \ & =
Q=I=M-1, (41b)
o M1
€ {kz Twbx — alﬁf} =+ Z Dby
=] =2
R=I/=M-1, (42a)

M-1

M M-1 M
£ ;_; Twpx = 122 Dy, € chf Ty Px = ; Dy,  (42b)

where (41) corresponds to (28a) and (42) o (28b). Here u,, wy,
and p; are the values of u, w, and p at z = zand ¢ = r; 1,
and s; are known vectors; and (42b) is the continuity equation
evaluated at z = =1, The velocity and pressure are given by
(28c), and the extra Poisson equations in programs P3 and P4
are similar to (42).

TABLE 11

SpforRe =1, M= 17, 0= 1,and T = 0.3,
Pseudospectral BDF Version

At Pl P2 P3 P4
1.00 e-2 1.8 e-1 4.4 &-2 28 e3 3.6e-3
5.00 e-3 3.0e2 4.3 e-3 39e4 49 e-4
2.50¢-3 48 e-3 10ed 46 e85 58e3
1.25 e-3 1.1e-3 1.3e-5 5.7 e-6 72e-6
6.25 e-4 2.7 e4 1.6 e6 7.0e-7 8.9 e-7
313 e4 6.7 e-5 2.0 e-7 8.8 e-8 1.1e?
1.56 e-4 1.7 e-5 25e8 1.1 e-8 1.4e8

In Tables I and II we show the errors

q(ze) — Gx

= T

(43)

incurred through use of the split step schemes at time t = T,
where, for any dependent variable, g is the analytical solution
of the temporally discretized form of (36)—(38), Zx is the grid
point at which the error attains its maximum value, and g, is
the split step numerical solution at z = z,. Since the error
caused by the spatial discretization is negligibly small for the
value of M used in the calculation, a vanishing value of dq
implies that the solutions for g calculated using the backward
differentiation formula and the various split step schemes co-
incide,

In Fig. 1 we plot Ap = ||p — pl| as a function of Az, where
p is the analytical solution of the temporally continuous version
of (36)-(38) at time + = T, p is the split step solution at the
same time given by the BDF versions of P1 and P3, and | - |
is the Buclidean norm. As can be seen, the pressure error in
program P3 is about two orders of magnitude smaller than in
P1. We have also fit the values of &w and 8p in Tables I and
ITand the value of Ap in Fig. 1 with curves of the form a(A7 S,
where & and 8 are constants. This shows that program P1 is
second-order accurate in the computation of w and p and that
program P3 is between second- and third-order accurate in the
computation of both quantities. The performance of program
P3 in this problem is much better than anticipated.

To demonstrate that the high accuracy of program P3 shown
it Tables I and 11 and in Fig. 1 is independent of the time
stepping scheme, we give the values of 8w and Sp computed
using Crank—-Nicholsen versions of programs P1--P4 in Tables
1l and 1V. In addition, calculations were made for a program
in which x is given by (29), two iterations of the form (26)—
(27) are carried out, and solution of the second Poisson equation

0.2 1 . —— 0.0025
1 0.002
0.15
= 100015
a b
o 0.1 J g
0,001
0,05
0.0005
.| , S
o 0.2 0.4 0.8 0.8 1 1.2
At x 100
FIG. 1. Pseudospectral errors ApforRe = 1, M = 17, o= 1, and T =

0.3. P1 is shown by open symbols, P3 by solid symbols.
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TABLE 111

dwforRe=1,M =17 a =1, and T = 0.3, Pseudospectral
Crank—Nicholson Version

Ar Pl P2 P3 P4
1.00 e-2 1.V ¢3 6.7 e-5 6.7 e-5 6.7 e-5
500 e-3 2.6e4 8.1 ¢-0 B.leo 8.l eb
2.50¢-3 6.6 e-3 1.0 e-6 1.0 g-6 1.0 ¢e-6
1.25 ¢-3 1.6 ¢35 1.2 e-7 12 e-7 1.2 e-7

in P3 and P4 is omitted. The accuracy was found to be better
than for our other programs, but not enough to compensate for
the computational expense,

We now consider finite element and finite difference discret-
izations of (36)—(38) by defining k = 2/{M — 1) and by intro-
ducing the grid points

z=—1+({@—-Dh1=I=M,
=g+ hi2,1=I=M-—1,

(44)

where i, and w, denote the values of u and w at z = z and
r =1, and p, the values of p at z = 7, and ¢ = ¢’. Then, using
piecewise linear velocity elements and piecewise constant pres-
sure elements, the finite element equations for u;, w,, and p,
arew; = wy,=0for7=1and I = M, and

(S, — é{(m — o(Su)} — oe(p + pot2 =1y,

Q=i=M-1, (45)

(SwYy — o {Tw)y = oA(Swh + alps + prolh = 5,
R=sI=M-1), (46)
(u;+| + u,)fz + (WH-I - IrV[)/h = 0. (1 =l=M- 1)9 (47)

where r, and s, are known vectors and where Sf and Tf are
defined by

TABLE 1V

dplorRe =1, M =17, &« = |, and T = 0.3, Pseudospectral
Crank—Nicholson Version

At Pl P2 P3 P4
1.00 e-2 54¢2 4.9 e-2 1.3e3 l.6e-3
5.00 e-3 7.5e-3 1.4 e-3 1.5e-4 1.8 e4
2.50 e-3 1.7 -3 385 1.8 e-5 2.2e-5
[.25 e-3 40¢-4 4.7 e-6 22 e-6 28 ¢-6

0.2 . . g : 0.03
1 0.025
0.15 4
3 0.02
e =g
= ©
= 0.1 70015 T
=9 =~
<1 s
7 0.01
0.05 1
1 0.005
0 T T T T T 0
0 0.2 0.4 0.6 0.8 1 1.2

At x 100

FIG. 2. Finite element errors Ap for Re = LM =25, e =1l,and T =
0.3. P1 is shown by open symbols, P4 by solid symbols.

(Sf) = (fio + 4fi + fin )6,

(48)
(TF) = (fior — 2fi + frsd/ I

The corresponding finite difference equations are obtained
by replacing (Sf); by f;. In the present finite element treatment
the lumped mass matrix M discussed earlier is taken as the
identity matrix, and programming the various split step algo-
rithms is straightforward.

InFigs. 2 and 3 we show the program Pt and P4 pressure errors
Ap for the finite difference and finite element discretizations.
Since the extra Poisson equations in both versions of program P4
were solved using the same centered finite difference scheme,
the poor accuracy of the finite element calculation for small Az
is necessarily due to errors caused by the lnmped mass approxi-
mation, which are dominant at small step sizes. For larger step
sizes use of this approximation induces no appreciable loss of
accuracy in the present problem. As regards order of accuracy,

0.2 ! * 0.03
1 0.025
0.15
1 0.02
z Z
& o1 10015
g £
1 0.01
0.05
1 0.008
[} — 0
Q 0.2 0.4 .6 0.8 1 1.2
ALx 100
FIG. 3. Finite difference errors Ap for Re = 1, M = 251, @ = 1, and

T = 0.3. Pl is shown by open symbols, P4 by solid symbols.
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curve fitting suggests that calculation of the pressure is second
order accurate for all computations shown in the figure, but that
programs P3 and P4 yield smaller errors than P1.

As a final example, we consider the driven cavity problem.,
In our version of the problem, this consists of computing two-
dimensional flow in the rectangle a < x = b, ¢ = y = d, with
initial conditions # = v = p = (4, and with boundary conditions

u=0atx=aand x = b, u = B(x)aty = c,

u="Tx)aty =d,

v=0aty=candy=d, v =Ly atx

Il
B

v=R(yyatx = b,

where B, T, L, and R are prescribed.

To treat this problem we introduce the grid points x, = a +
TAx,y;=c+ JAy, where Ax = (b — a)/M, Ay = (d — ¢)IN,
0=7=M, and 0 =.J =N, and we suppress a possible checker
board pressure oscillation by defining the discretized velocity
components (1, vy ;) and the discretized pressure p, , by

= u(xy, Yomia, B Uy = 0y, ¥i, 1),
(50
Pis = P, Ye-us B,

where u;; is defined for0 =l =M, 1 =J=N;p,for | =
I=MO0=J=N,andp,,forl =I=M1=J=N. As
in other computations using finite differences on a staggered
grid, we evaluate the continuity equation, the x momentum
equation, and the y momentum equation at the pressure grid
points, the « grid points, and the v grid points, respectively,
using centered difference formulae to approximate spatial deriv-
atives. In this method the velocity component v evaluated at a
u grid point in the x momentum equation and the velocity
component # evaluated at a v grid point in the y momentum
equation are approximated as averages of their four nearest
neighbors. Values of # in the x momentum equation and of v
in the y momentum equation evaluated at points outside the
flow domain are determined here using quadratic extrapolation.

We now discretize the equations temporally and define U/,
V, and P as the matrices with components u;;, v,;, and p,; at
time step t’. Then, incorporating the boundary conditions into
the governing equations and recalling the definition of & follow-
ing (12), the discretized continuity and momentum equations
take the form

Al + BV =10, (51)
U~ Rie (EU + UFT) + eCP = X, (52)
V— Rie (GU + VHT) + ePD" = ¥, (53)

where A, ..., A are matrices representing differentiation, the

superscript T denotes the transpose, the matrices X and Y are
known at time ¢/, and U, V, and P are defined on the interior
grid points. An arbitrary additive scalar constant in the solution
for P is determined here by requiring that

B

ZPI.J =0. .

J=

(34)

i

In the basic split step scheme, we let Q denote a known
close approximation to P, express U, V, and P in the form
U=0-6CP, V=V-8ePD', P=P+Q (55
and approximate the governing equations as in (28). This yields
the uncoupled Helmholtz equations

0- % (EU + OFT) = X — £CQ, (56)
- é(cfm VH™) = ¥ — £QD7, (57)

and the Poisson equation
e{(AC)P + P(BDY} = AU + VBT (38)

In the present study, (56) and (57) were solved using the V
cycle multigrid algorithm described by Hackbusch on p. 33 of
[15], with semicoarsening and line Gauss—Seidel iteration used
as the smoothing operations. The prolongation and restriction
operators employed in the calculation are based on a combina-
tion of linear interpolation and linear extrapolation. These pro-
cedures, together with a multigrid algorithm for treating singu-
lar systems given on p. 266 of [15], were used to solve (58)
subject to (54) and to solve (54) and the equation corresponding
to (30). In contrast to Van Kan’s experience, no problems were
incurred in the calculation of the pressure.

Computations for various combinations of Reynolds number,
grid spacing, and temporal step size were carried out for the
regularized driven cavity problem described by a = ¢ = 0,
b=4d=1 and by B(x) = L{y) = R(y) = 0, T(x) =
16x%(1 — x)’. For the moderate Reynolds number case Re =
100, a close approximation to the exact solution of the spatially
discretized equations was computed by integrating using a step
size At = 1.25 X 1073, This solution was used to compute the
errors du and §p shown in Tables V and VI, As can be seen,
in this computation the error 8p computed using P1 is small,
and no real advantage is obtained by using program P3.

Computations were also made for a larger Reynolds number,
Re = 5000, using a 64 X 64 grid. In treating this problem, we
computed the ratio

lg(Ar, 1) — q(A12, D)
lq(Ati2, 1) — g(Ar/4, )|’

KAt t,q) = (39)
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TABLE V

u for Re = 100, M = N = 16,
and T = 1, BDF Solution of Driven
Cavity Problem

Ar Pl P3
0.2 1.9 e-2 36e-2
0.1 32e3 2.4 e-2
0.05 6.6 e-4 5.6e4
0.025 1.6 e-4 . lde4
0. 2.8 e-5 26e-5

where ¢(A¢, 1) is the numerical solution at time ; for any variable
g computed using a time step A¢, and || is the maximum
modulus norm. This ratio should equal 4 for a second order
scheme. Computations for both the large Reynolds number case
and for the case summarized in Tables V and VI showed values
of K(0.05, 1, g) for ¢ = (u, v, p) varying between 3.7 and 4.6
for programs Pl, P2, and P3. On the basis of this relatively
limited computational experience, it appears that all three
schemes are second-order accurate when applied to the version
of the driven cavity program treated here.

4. DISCUSSION

In early versions of programs P3 and P4 the equations for
p. were solved at all time steps and the solution was advanced
in time by taking p = p, at time #*, as suggested on pp. 596—
599 of [8}. When applied to the sample problem treated above,
this procedure provided good accuracy for small step sizes
but was otherwise disastrous because of numerical instability.
Consequently, if an extra Poisson equation is solved to improve
" the accuracy of the computed pressure, as in the programs in
[8] discussed above and in our P3 and P4, we suggest advancing
the solution in time using the basic split step scheme and
calculating the corrected pressures p, only for the purpose of
reporting their values.

The results of the sample calculations and Van Kan's analysis

TABLE VI

ép forRe = 100, M = N = 16,
and 7 = 1, BDF Solution of Driven
Cavity Problem

At Pl P3
0.2 74 e2 93 ¢-2
0.1 31e3 1.8 e-3
0.05 6.8 ¢4 52e4
0.025 1.5 e4 14 e4
0.01 2.7 e5 32e-5

imply that all our programs provide a second order accurate
solution for the velocity, and the computational evidence accu-
mulated here supports Van Kan’s claim that the pressure calcu-
lation in scheme P1 is also second order accurate. Accordingly,
it appears that second-order accuracy in the computation of the
velocity and pressure can be obtained by solving one vector
Helmholtz equation and one Poisson equation per time step,
(28a) and (28b) or (35) and (34) above.

In addition, our computational results suggest that the error
in computing the pressure can be reduced in most of our exam-
ples by solving an additional Poisson equation, for example
(30) in program P3. This is admittedly vague, and a rigorous
estimate of the error in computing the pressure would be desir-
able. In particular, it would be useful 1o determine if the rather
poor accuracy for the pressure often obtained in split step
schemes is intrinsic to the splitting procedure or is caused by
an inappropriate spatial discretization.

We conclude by noting that the type of spatial discretization
affects the accuracy of the computation because all split step
methods are based on the assumption that the discretized version
of the operator A#(V?} is small. In particular, in the pseudospec-
tral example treated here the use of excessive spatial resolution
in the calculation leads to a loss of accuracy because the matrix
K then has a large norm, thus invalidating the approximation
of (16) by (28).
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